Fluorescent porous carbon nanocapsules for two-photon imaging, NIR/pH dual-responsive drug carrier, and photothermal therapy.
نویسندگان
چکیده
An efficient nanomedical platform that can combine two-photon cell imaging, near infrared (NIR) light and pH dual responsive drug delivery, and photothermal treatment was successfully developed based on fluorescent porous carbon-nanocapsules (FPC-NCs, size ∼100 nm) with carbon dots (CDs) embedded in the shell. The stable, excitation wavelength (λex)-tunable and upconverted fluorescence from the CDs embedded in the porous carbon shell enable the FPC-NCs to serve as an excellent confocal and two-photon imaging contrast agent under the excitation of laser with a broad range of wavelength from ultraviolet (UV) light (405 nm) to NIR light (900 nm). The FPC-NCs demonstrate a very high loading capacity (1335 mg g(-1)) toward doxorubicin drug benefited from the hollow cavity structure, porous carbon shell, as well as the supramolecular π stacking and electrostatic interactions between the doxorubicin molecules and carbon shell. In addition, a responsive release of doxorubicin from the FPC-NCs can be activated by lowering the pH to acidic (from 7.4 to 5.0) due to the presence of pH-sensitive carboxyl groups on the FPC-NCs and amino groups on doxorubicin molecules. Furthermore, the FPC-NCs can absorb and effectively convert the NIR light to heat, thus, manifest the ability of NIR-responsive drug release and combined photothermal/chemo-therapy for high therapeutic efficacy.
منابع مشابه
Magnetic/NIR-responsive drug carrier, multicolor cell imaging, and enhanced photothermal therapy of gold capped magnetite-fluorescent carbon hybrid nanoparticles.
This paper reports a type of multifunctional hybrid nanoparticle (NP) composed of gold nanocrystals coated on and/or embedded in a magnetite-fluorescent porous carbon core-shell NP template (Fe3O4@PC-CDs-Au) for biomedical applications, including magnetic/NIR-responsive drug release, multicolor cell imaging, and enhanced photothermal therapy. The synthesis of the Fe3O4@PC-CDs-Au NPs firstly inv...
متن کاملMesoporous Carbon Nanospheres as a Multifunctional Carrier for Cancer Theranostics
Optical nanomaterials with intense absorption in near-infrared (NIR) region hold great promise for biomedical applications such as photothermal therapy (PTT) and photoacoustic imaging (PAI). In this work, we report mesoporous carbon nanospheres (Meso-CNs) with broadband and intense absorption in the UV-Vis-NIR region (300-1400 nm) and explore their potential as a multifunctional platform for ph...
متن کاملBiocompatible PEG-Chitosan@Carbon Dots Hybrid Nanogels for Two-Photon Fluorescence Imaging, Near-Infrared Light/ pH Dual-Responsive Drug Carrier, and Synergistic Therapy
Stimuli-responsive nanogels have gained signifi cant progress because of their great potential for applications in intelligent drug delivery and other biomedical fi elds. [ 1–4 ] Recently, much attention has been focused on the integration of stimuli-responsive polymer nanogels with inorganic nanoparticles (NPs) to combine the biosensing or bioimaging ability with the controlled drug delivery f...
متن کاملMultifunctional GQDs-Coated Fe/Bi Nanohybrids for CT/MR Dual Imaging and in vitro Photothermal Therapy
Introduction: The multipurpose nanocomposites have gained growing biomedical attention as promising nanotheranostics to improve The effectiveness of cancer treatment, which concurrently combine advantages of the therapeutic and diagnostic techniques into one nanosystem. The “all-in on” probes not only help to ablate cancerous tumors, but also allow to optimize and monitoring of...
متن کاملDual-Stimuli Responsive Nanotheranostics for Multimodal Imaging Guided Trimodal Synergistic Therapy.
Multimodal imaging guided synergistic therapy promises more accurate diagnosis than any single imaging modality, and higher therapeutic efficiency than any single one or their simple "mechanical" combination. Herein, we report a dual-stimuli responsive nanotheranostic based on a hierarchical nanoplatform, composed of mesoporous silica-coated gold nanorods (GNR@SiO2), Indocyanine Green (ICG), an...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Biomaterials
دوره 53 شماره
صفحات -
تاریخ انتشار 2015